Demand Forecast at the Foodstuff Retail Segment: a Strategic Sustainability Tool at a Small-Sized Brazilian Company

Authors

  • Claudimar Pereira Da Veiga Pontifícia Universidade Católica do Paraná - PUCPR
  • Cássia Rita Pereira Da Veiga Pontifícia Universidade Católica do Paraná - PUCPR
  • Anderson Catapan Pontifícia Universidade Católica do Paraná - PUCPR
  • Ubiratã Tortato Pontifícia Universidade Católica do Paraná - PUCPR
  • Wesley Vieira Da Silva Pontifícia Universidade Católica do Paraná - PUCPR

DOI:

https://doi.org/10.24023/FutureJournal/2175-5825/2013.v5i2.142

Keywords:

Demand forecasting. Sustainable supply chain. Sustainability

Abstract

Demand forecasting plays an increasingly relevant role within competitive and globalized marketplaces, in as much as operations planning and subsequent transition into a sustainable chain of supplies, is concerned. To this effect, the purpose of this study is to present the application of demand forecasting as a strategic sustainability tool at a Brazilian SME. Therefore, this is a descriptive, ex-post facto and cross-cut, sectional time case study, which employs qualitative and historical quantitative and direct observational data and that utilizes, as both indicators of the level of service offered to consumers and of opportunity costs the artificial neural networks model and fill-rates, for demand forecasting and response purposes. The study further established cause-effect relationships between prediction accuracy, demand responsiveness and process-resulting economic, environmental and social performances. Findings additionally concurred with both widely acknowledged sustainability concepts - NRBV (Natural-Resource-Based View) and 3BL (Triple Bottom Line) - by demonstrating that demand forecasts ensure the efficient use of resources, improvements in customer responsiveness and also mitigate supply chain stock out and overstock losses. Further to the mentioned economic benefit, demand forecasting additionally reduced the amount of waste that arises from retail product shelf-life expiration, improving the addressing of demand itself and of customer satisfaction, thus driving consequent environmental and social gains.

Downloads

Download data is not yet available.

Author Biographies

Claudimar Pereira Da Veiga, Pontifícia Universidade Católica do Paraná - PUCPR

Doutorando em Administração na Escola de Negócios da Pontifícia Universidade Católica do Paraná. Mestrado em Engenharia de Produção e Sistemas pelo programa de pós-graduação em Engenharia de Produção da PUCPR.

Cássia Rita Pereira Da Veiga, Pontifícia Universidade Católica do Paraná - PUCPR

Mestre em Administração pela Pontifícia Universidade Católica do Paraná. MBA em Marketing pela Fundação Getúlio Vargas - FGV.

Anderson Catapan, Pontifícia Universidade Católica do Paraná - PUCPR

Doutorando em Administração na Pontifícia Universidade Católica do Paraná - PUCPR. Mestrado em Ciências Contabeis pela Universidade Federal do Paraná - UFPR

Ubiratã Tortato, Pontifícia Universidade Católica do Paraná - PUCPR

Pós-Doutorado pela Nanyang Technological University. Doutorado em Engenharia de Produção pela Universidade de São Paulo - USP. Mestrado em Administração pela Universidade Federal do Paraná - UFPR. Professor Titular do Programa mestrado e doutorado na PUCPR.

Wesley Vieira Da Silva, Pontifícia Universidade Católica do Paraná - PUCPR

Doutorado e Mestrado em Engenharia de Produção pela Universidade Federal de Santa Catarina - UFSC. Coordenador do Programa de Pós-Graduação Stricto Sensu em Administração na Pontifícia Universidade Católica do Paraná - PUCPR

References

Acar, Y. & Gardner, J. E. S. (2012). Forecasting method selection in a global supply. International Journal of Forecasting, Turkey, doi:10.1016/j.ijforecast.2011.11.003, 28(4), 842-848.

Almeida, F. C. & Passari, A. F. (2006) Previsão de vendas no varejo por meio de redes neurais. Revista de Administração, 41(3), 257-272.

Angelo, C. F., Zwicker, R., Fouto, N. M. M. D. & Luppe, M. R. (2011). Séries temporais e redes neurais: uma análise comparativa de técnicas na previsão de vendas do varejo brasileiro. Brazilian Business Review, 8(2), 1-21.

Barney, J. (1991). Firm resources and sustained competitive advantage. Journal of Management, 17(1), 99-120.

Buytendijk, F., Hatch, T. & Micheli, P. (2010). Scenario-based strategy maps. Business Horizons, 53(4), 335-347.

Castro, L. N. (2006). Fundamentals of natural computing: an overview. Physics of Life Reviews, 4(1), 1-36.

Chen, K-Y. (2011) Combining linear and nonlinear model in forecasting tourism demand. Expert Systems with Application, Taiwan, doi:10.1016/j.eswa.2011.02.049, 38(8), 10368-10376.

Chopra, S. & Meindl, P. (2003). Gerenciamento da cadeia de suprimentos: estratégia, planejamento e operações. São Paulo: Pearson Prentice Hall.

Chu, C-W & Zhang, G. P. (2003). A comparative of linear and nonlinear models for aggregate retail sales forecasting. International Journal of Production Economics, 86(3), 217-231.

Coelho, L. S., Santos, A. A. P., Costa Jr, N. C. A. (2008). Can we forecast Brazilian exchange rates? Empirical evidences using computational intelligence and econometric models. Gestão e Produção, Brazil, 15(3), 1-14.

Dias, S. R. (1993). Estratégia e canais de distribuição. São Paulo: Atlas.

Epstein, M. J. & Wisner, P. S. (2001). Using the balanced scorecard approach to implement sustainability. Environmental Quality Management, 11(2), 1-10.

Elkington, J. (1997). Cannibals with forks. United Kingdom: Capstone.

Gladwin, T. N., Kennelly, J. J. & Krause, T-S. (1995). Shifting paradigms for sustainable development: implications for management theory and research. Academy of Management Review, 20(4), 71-88.

Gupta, S. & Palsule-Desai, O. D. (2011, December). Sustainable supply chain management: review and research opportunities. IIMB Management Review, 23(4), 234-245.

Haykin, S. (2001). Redes neurais: princípios e prática (2a ed.). Porto Alegre: Bookman.

Häner, C. (2011). SMEs in turbulent times – a comparative analysis between Argentina, Brazil and European countries. Master Thesis (International Business Administration) – Wiesbaden Business School, Germany.

Hart, S. L. (1995). A natural-resource-based view of the firm. Academy of Management Review, 20(4), p. 990.

Kuo, R. J. & Xue, K. C. (1999, December). Fuzzy neural networks with application to sales forecasting. Fuzzy Sets and Systems, 108(2), 123-143.

Lee, S.-Y. (2008). Drivers for the participation of small and medium-sized suppliers in green supply chain initiatives. Supply Chain Management: An International Journal, 13(3), 185-198.

Lemme, C. F. (2010). O valor gerado pela sustentabilidade corporativa. In D. Zylberstajn & C. Lins, Sustentabilidade e geração de valor: a transição para o século XXI. Rio de Janeiro: Elsevier.

Levis, A. A. & Papageorgiou, G. (2005). Customer demand forecasting via support vector regression analysis. Chemical Engineering Research and Design, 83(A8), 1009-1018.

Lima, M. (2003). Estoque: custo de oportunidade e impacto sobre os indicadores financeiros. Recovered in June 14, 2013, from http://www.ilos.com.br.

Mazur, E. (2012). Green transformation of small business: achieving and going beyond environmental requirements. OECD Environmental Working Papers, n. 47, 1-50.

Meijden, V. D. L. H., Nunen, J. A. E. E. V. & Ramondt, A. (1994). Forecasting: bridging the gap between sales and manufacturing. International Journal Production Economics, 37(1), 101-114.

Moore, S. B. & Manring, S. L. (2009). Strategy development in small and medium sized enterprises for sustainability and increased value creation. Journal of Cleaner Production, 17, 276-282.

Pao, H-T. (2006). Comparing linear and nonlinear forecasts for Taiwan’s electricity consumption. Energy, Taiwan, 31, 2129-2141.

Price, D. H. R. & Sharp, J. A. (1985). Investigation of the impact of changes in demand forecasting method on the financial performance of an electricity supply undertaking. International Journal of Electrical Power & Energy Systems, 7(3), 131-137.

Romualdo, L. C. S., Baptista, E. & Vieira, D. R. (2010, Março/abril). Sistema Fuzzy-Expert: para previsão de séries temporais no supply chain. Logística e Supply Chain Management, Brazil, 15, ano III, 74-82.

Sarkis, J. (2012). A boundaries and flows perspective of green supply chain management. Supply Chain Management: An International Journal, 17(1), 2012-216.

Swanson, N. R. & White, H. (1997). Forecasting economic time series using flexible versus fixed specification and linear versus nonlinear econometric models. International Journal of Forecasting, United States, 13, 439-461.

Terasvirta, T., Dijk, D. van & Medeiros, M. C. (2005). Linear models, smooth transition auto regressions, and neural networks for forecasting macroeconomic time series: a re-examination. International Journal of Forecasting, Sweden, 21, 755-774.

Teece, D. J., Pisano, G. & Shuen, A. (1997). Dynamic capabilities and strategic management. Strategic Management Journal, 18(7), 509-533.

Vachon, S. & Mao, Z. (2008, October). Linking supply chain strength to sustainable development: a country-level analysis. Journal of Cleaner Production, 16(15), 1552-1560.

Veiga, C. P. (2009). Análise de métodos quantitativos de previsão de demanda: estudo comparativo e desempenho financeiro. Dissertação (Mestrado em Engenharia de Produção e Sistemas) – Pontifícia Universidade Católica do Paraná, Brazil.

Veiga, C. R. P., Veiga, C. P. & Duclós, L. C. (2010). The accuracy of demand forecasting models as critical problem to financial performance in the food industry. Future Studies Research Journal: Trends and Strategies, Brazil, 2(2), 81-104.

Veiga, C. P., Veiga, C. P., Vieira, G. E. & Tortato, U. (2012). Impacto financeiro dos erros de previsão: um estudo comparativo entre modelos de previsão lineares e redes neurais aplicados na gestão empresarial. Produção Online, 12, 629-656.

Voss, C., Tsikriktsis, N. & Frohlich, M. (2002). Case research in operations management. International Journal of Operations & Production Management, 22(2), 195-219.

Xie, J., Lee, T. S. & Zhao, X. (2004). Impact of forecasting error on the performance of capacitated multi-item production systems. Computers & Industrial Engineering, 46, 205-219.

Wu, Z. & Pagell, M. (2011). Balancing priorities: decision-making in sustainable supply chain management. Journal of Operations Management, 29(6), 577-590.

Yin, R. (1987). Case study research: design and methods. Beverly Hills: Sage Publications.

Yokum, J. T. & Armstrong, J. S. (1995). Beyond accuracy: comparison of criteria used to select forecasting methods. International Journal of Forecasting, United States, 11, 591-597.

Zailani, S., Jeyaraman, K., Vengadasan, G. & Premkumar, R. (2012). Sustainable supply chain management (SSCM) in Malaysia, a survey. International Journal Production Economics, doi:10.1016/j.ijpe.2012.02.008, 14(1), 330-340.

Zeng, A. Z. (2000). Efficiency of using fill-rate criterion to determine safety stock: a theoretical perspective and a case study. Production and Inventory. Management Journal, United States, 41(2), 41-44.

Zorpas, A. (2010). Environmental management systems as sustainable tools in the way of life for the SMEs e VSMEs. Bioresource Technology, 101(6), 1544-1557.

Zotteri, G., Kalchschmidt, M. & Caniato, F. (2005). The impact of aggregation level on forecasting performance. International Journal of Production Economics, 93-94(8), 479-491.

Zylbersztajn, D. & Lins, C. (2007). Sustentabilidade e geração de valor: transição para o século XXI. Rio de Janeiro: Elsevier.

Published

2013-12-11

How to Cite

Da Veiga, C. P., Da Veiga, C. R. P., Catapan, A., Tortato, U., & Silva, W. V. D. (2013). Demand Forecast at the Foodstuff Retail Segment: a Strategic Sustainability Tool at a Small-Sized Brazilian Company. Future Studies Research Journal: Trends and Strategies, 5(2), 113–133. https://doi.org/10.24023/FutureJournal/2175-5825/2013.v5i2.142

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.