Assessment of Industry Maturity Level 4.0: The Case of a Strategic Defense Company

Marcus Vinicius Gonçalves da Silva, Clarissa Figueredo Rocha


Purpose – This article aims to evaluate the maturity level of a Strategic Defense Company (EED), from the perspective of Industry 4.0 concepts. The EED are characterized by high technological training and the ability to supply Strategic Defense Products (PED) to the Brazilian Armed Forces.


Theoretical framework – The term Industry 4.0 has become one of the most recurring topics for the global manufacturing sector and in the academic world (Kagermann et al., 2013), however, academic literature on this topic is still scarce (Qin, Liu & Grosvenor, 2016). One of the problems that stands out is the lack of empirical evidence on the impacts that technologies of Industry 4.0 can have on the operational performance of companies. Instead of this new trend being accepted as dogma, it is necessary to prove its effects on companies, empirically. In this context, this study seeks answers to the following research question: What is the maturity level of Industry 4.0 in Strategic Defense Companies?


Methodology – The research is classified in bibliographic, qualitative and descriptive, and uses the survey developed by the IMPULS Foundation, german consulting company, translated and adapted for this study, in the case of the Brazilian Military Material Industry (IMBEL).


Findings – The results reveal that the analyzed company has an intermediate maturity level, categorized as learner in an Industry 4.0 maturity model.


Research, Practical & Social implications – The research contributes to the empirical development of a model and provides an instrument for analyzing the maturity of Industry 4.0 that can be used in companies from different sectors. Regarding research limitations, it is pointed out that the empirically evaluated data could be validated through descriptive statistics, which would certainly generate greater confidence in the results, however, the study should have a larger sample of participating companies, not being the subject of this study.


Originality – One of the gaps in the study of Industry 4.0, in Brazil, is the absence of empirical evidence on the impacts of enabling technologies of this new paradigma, and how they can contribute to the performance of companies. In view of this new tendency, it is necessary to analyze its impacts on companies, seeking to relate the theoretical constructs developed and the reality observed in companies.


Industry 4.0; Assessment; Defense; Strategic Defense Companies; IMBEL


Backlund, F., Chronéer, D. & Sundqvist, E. (2014). Project management maturity models–A critical review: A case study within Swedish engineering and construction organizations. Procedia-Social and Behavioral Sciences, v. 119, p. 837-846.


Berger, R. (2014). Industry 4.0: The new industrial Revolution. How Europe will succeed. Roland Berger Strategy Consultants, March. Recuperado em 12 de maio, 2019, de

Bibby, L. & Dehe, B. (2018). Defining and assessing industry 4.0 maturity le-vels – case of the defence sector, Production Planning & Control. DOI:

Borsa, J. C., Damásio, B. F. & Bandeira, D. R. (2015). Adaptação e validação de instrumentos psicológicos entre culturas: Algumas considerações. Paidéia, 22(53), 423-432. DOI:

Centro de Apoio a Sistemas Logísticos de Defesa. (2019). Catálogo de Empresas de Interesse da Defesa. Recuperado em 10 de maio, 2019, de

Correa Filho, S. L. S., Barros, D. C., Castro, B. H. R. de, Fonseca, P. V. D. R., & Gornsztejn, J. (2013). Panorama sobre a indústria de defesa e segurança no Brasil. BNDES Setorial, Rio de Janeiro, n. 38, p. 373-408, set.

Ministério da Defesa. (2019). Comissão Mista da Indústria da Defesa. Recuperado em 12 de maio, 2019, de

Decreto n. 7.970, de 28 de março de 2013. (2013). Regulamenta dispositivos da Lei nº 12.598, de 22 de março de 2012, que estabelece normas especiais para as compras, as contratações e o desenvolvimento de produtos e sistemas de defesa, e dá outras providências. Brasília, DF. Recuperado em 10 de junho, 2019, de

Dombrowski, U & Wagner, T. (2014). Mental strain as field of action in the 4th industrial revolution. Procedia CIRP, v. 17, p. 100-105, 2014. DOI:

Erol, S., Schumacher, A. & Sihn, W. (2016). Strategic guidance towards Industry 4.0 – a three-stage process model. In: International Conference on Competitive Manufacturing (COMA16), Stellenbosch, South Africa. Recuperado em 15 maio, 2019, de

Godoy, A. S. (1995). Pesquisa qualitativa: tipos fundamentais. Revista de Administração de Empresas, São Paulo, v. 35, n. 3, p. 20-29, maio/jun. DOI:

Indústria de Material Bélico do Brasil. (2019). Institucional. Recuperado 09 de maio, 2019, de

Kagermann, H., Wahlster, W. & Helbig, J. (2013). Recommendations for implementing the strategic initiative. Industrie 4.0: Securing the future of German manufacturing industry. Final report of the Industrie 4.0 Working Group. Acatech, Forschungsunion. Recuperado em 16 de maio, 2019, de

Langston, C. & Ghanbaripour, A. N. (2016). A Management Maturity Model (MMM) for project-based organisational performance assessment. Construction Economics and Building, v. 16, n. 4, p. 68-85. DOI:

Lee, J. (2013). Industry 4.0 in Big Data Environment. Tech.News Strategy, 26, pp. 8-9. Recuperado em 12 de maio, 2019, de

Lichtblau K., Stich, V., Bertenrath, R., Blum, M., Bleider, M., Millack, A., Schmitt, K., Schmitz, E. & Schröter, M. (2015). Industrie 4.0-Readiness Online Self-Check for Businesses. Recuperado em 10 de maio, 2019, de

PricewaterhouseCoopers. (2016). Global Industry 4.0 Survey. Recuperado em 15 de maio, 2019, de

Qin, J., Liu, Y. & Grosvenor, R. (2016). A Categorical Framework of Manufacturing for Industry 4.0 and Beyond. Procedia CIRP, v. 52, p. 173–178. DOI:

Schuh, G., Anderl, R., Gausemeier, J., ten Hompel, M. & Wahlster, W. (2017). Industrie 4.0 Maturity Index. Managing the Digital Transformation of Companies. Munich: Herbert Utz. Recuperado em 15 de maio, 2019, de

Schumacher, A., Erol, S. & Sihn, W. (2016). A maturity model for assessing Industry 4.0 readiness and maturity of manufacturing enterprises. Procedia CIRP, v. 52, p. 161-166. DOI:

Tao, F., Cheng, J., Qi, Q., Zhang, M., Zhang, H. & Sui, F. (2018). Digital twin-driven product design, manufacturing and service with big data. The International Journal of Advanced Manufacturing Technology, 94(9-12), 3563-3576. DOI:

Wang, S., Wan, J., Zhang, D., Li, D. & Zhang, C. (2016). Towards smart factory for industry 4.0: a selforganized multi-agent system with big data based feedback and coordination. Computer Networks, 101, 158-168. DOI:

Wee, D., Kelly, R., Cattell, J., & Breunig, M. (2015). Industry 4.0: How to navigate digitization of the manufacturing sector. McKinsey Digital. Recuperado em 25 de maio, 2019, de


Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Copyright (c) 2019 Future Studies Research Journal: Trends and Strategies

Future Stud. Res. J. e-ISSN: 2175-5825

Mailing Address: Avenida Drª Ruth Cardoso, 7221 - CEP 05425-070 - Pinheiros - São Paulo/SP - Brasil

The publications of this journal are licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.